CMR-based blood oximetry via multi-parametric estimation using multiple T2 measurements
نویسندگان
چکیده
BACKGROUND Measurement of blood oxygen saturation (O2 saturation) is of great importance for evaluation of patients with many cardiovascular diseases, but currently there are no established non-invasive methods to measure blood O2 saturation in the heart. While T2-based CMR oximetry methods have been previously described, these approaches rely on technique-specific calibration factors that may not generalize across patient populations and are impractical to obtain in individual patients. We present a solution that utilizes multiple T2 measurements made using different inter-echo pulse spacings. These data are jointly processed to estimate all unknown parameters, including O2 saturation, in the Luz-Meiboom (L-M) model. We evaluated the accuracy of the proposed method against invasive catheterization in a porcine hypoxemia model. METHODS Sufficient data diversity to estimate the various unknown parameters of the L-M model, including O2 saturation, was achieved by acquiring four T2 maps, each at a different τ 180 (12, 15, 20, and 25 ms). Venous and arterial blood T2 values from these maps, together with hematocrit and arterial O2 saturation, were jointly processed to derive estimates for venous O2 saturation and other nuisance parameters in the L-M model. The technique was validated by a progressive graded hypoxemia experiment in seven pigs. CMR estimates of O2 saturation in the right ventricle were compared against a reference O2 saturation obtained by invasive catheterization from the right atrium in each pig, at each hypoxemia stage. O2 saturation derived from the proposed technique was also compared against the previously described method of applying a global calibration factor (K) to the simplified L-M model. RESULTS Venous O2 saturation results obtained using the proposed CMR oximetry method exhibited better agreement (y = 0.84× + 12.29, R2 = 0.89) with invasive blood gas analysis when compared to O2 saturation estimated by a global calibration method (y = 0.69× + 27.52, R2 = 0.73). CONCLUSIONS We have demonstrated a novel, non-invasive method to estimate O2 saturation using quantitative T2 mapping. This technique may provide a valuable addition to the diagnostic utility of CMR in patients with congenital heart disease, heart failure, and pulmonary hypertension.
منابع مشابه
Gradient Spin Echo (GraSE) imaging for fast myocardial T2 mapping
BACKGROUND Quantitative Cardiovascular Magnetic Resonance (CMR) techniques have gained high interest in CMR research. Myocardial T2 mapping is thought to be helpful in diagnosis of acute myocardial conditions associated with myocardial edema. In this study we aimed to establish a technique for myocardial T2 mapping based on gradient-spin-echo (GraSE) imaging. METHODS The local ethics committe...
متن کاملAccuracy of conventional oximetry for flow estimation in patients with superior cavopulmonary connection: a comparison with phase-contrast cardiac MRI.
BACKGROUND Cardiac catheterization is routinely used as a diagnostic tool in single ventricle patients with superior cavopulmonary connection. This physiology presents inherent challenges in applying the Fick principle to estimate flow. We sought to quantitatively define the error in oximetry-derived flow parameters using phase-contrast cardiac MRI (CMR) as a reference. METHODS AND RESULTS Th...
متن کاملIn-vivo quantitative T2 mapping of carotid arteries in atherosclerotic patients: segmentation and T2 measurement of plaque components
BACKGROUND Atherosclerotic plaques in carotid arteries can be characterized in-vivo by multicontrast cardiovascular magnetic resonance (CMR), which has been thoroughly validated with histology. However, the non-quantitative nature of multicontrast CMR and the need for extensive post-acquisition interpretation limit the widespread clinical application of in-vivo CMR plaque characterization. Quan...
متن کاملAdvances in parametric mapping with CMR imaging.
Cardiac magnetic resonance imaging (CMR) is well established and considered the gold standard for assessing myocardial volumes and function, and for quantifying myocardial fibrosis in both ischemic and nonischemic heart disease. Recent developments in CMR imaging techniques are enabling clinically-feasible rapid parametric mapping of myocardial perfusion and magnetic relaxation properties (T1, ...
متن کاملMulti-Area State Estimation Based on PMU Measurements in Distribution Networks
State estimation in the energy management center of active distribution networks has attracted many attentions. Considering an increase in complexity and real-time management of active distribution networks and knowing the network information at each time instant are necessary. This article presents a two-step multi-area state estimation method in balanced active distribution networks. The prop...
متن کامل